
AFRL-AFOSR-VA-TR-2016-0306

Integrating Programming Language and Operating System Information Security
Mechanisms

Stephen Chong
HARVARD COLLEGE PRESIDENT & FELLOWS OF
1350 MASS AVE STE 600
CAMBRIDGE, MA 02138-3846

09/03/2016
Final Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
AF Office Of Scientific Research (AFOSR)/RTA2

9/6/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)

31-08-2016
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

01-06-2013 - 31-05-2016
4. TITLE AND SUBTITLE
Integrating Programming Language and Operating System Information
Security Mechanisms

5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-12-1-0262

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Stephen Chong

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Harvard University
1350 Mass Ave
Cambridge MA 02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research
875 North Randolph Street
Suite 325, Room 3112
Arlington VA, 22203

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION A: Distribution approved for public release.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This grant aims to improve the guarantees offered by both language-based information security mechanisms, and operating system information
security mechanisms. It seeks to do so by investigating interactions between language-based and OS mechanisms for information security, and
exploiting these interactions both to improve the precision of security enforcement, and to provide greater assurance of information security.

This grant focuses on two key projects: language-based control of authority; and formal guarantees for the correctness of audit information.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

6

19a. NAME OF RESPONSIBLE PERSON
Stephen Chong a. REPORT b. ABSTRACT c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)
617 496-6382

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0
Reset DISTRIBUTION A: Distribution approved for public release.

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year and
be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998;
xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's thesis,
progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which
the work was performed and the report was written,
e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov
1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number
and part number, if applicable. On classified
documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers
as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the report,
e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as
they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report. The
form of entry is the last name, first name, middle initial,
and additional qualifiers separated by commas, e.g.
Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned by
the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the report. If
additional limitations/ restrictions or special markings are
indicated, follow agency authorization procedures, e.g.
RD/FRD, PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition number,
etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying
major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the top
and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the abstract.
Enter UU (Unclassified Unlimited) or SAR (Same as
Report). An entry in this block is necessary if the abstract
is to be limited.

Standard Form 298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release.

AFOSR	Final	Report	

Grant	Title:	 Integrating Programming Language and Operating
System Information Security Mechanisms

Grant	Number:	 FA9550-12-1-0262	

PI:	 Stephen	Chong	
chong@seas.harvard.edu	

Organization	 Harvard	University	
Program	Manager	 Tristan	Nguyen	
Dates	covered	 June	1	2013–May	31	2016	

Abstract	
This	grant	aims	to	improve	the	guarantees	offered	by	both	language-based	
information	security	mechanisms,	and	operating	system	information	security	
mechanisms.		It	seeks	to	do	so	by	investigating	interactions	between	language-based	
and	OS	mechanisms	for	information	security,	and	exploiting	these	interactions	both	
to	improve	the	precision	of	security	enforcement,	and	to	provide	greater	assurance	
of	information	security.	

This	grant	focuses	on	two	key	projects:	language-based	control	of	authority;	and	
formal	guarantees	for	the	correctness	of	audit	information.	

Highlights	of	the	reporting	period:	
• Design,	implementation,	and	release	of	Shill,	a	secure	shell	scripting

language.	See	http://shill-lang.org/.	
• Design	and	implementation	an	extensible	framework	for	authority	control,

capable	of	expressing	and	composing	many	existing	and	novel	access	control	
mechanisms.	

• Introduced	formal	definition	for	the	correctness	of	audit	logs,	and	designed
and	implemented	an	approach	to	declare	audit	policies	and	automatically	
ensure	that	correct	audit	logs	are	generated	during	program	execution.	

• Explored	the	use	of	declarative	policies	on	capabilities	to	ensure	correct
usage,	including	access-control	and	information-flow	policies	that	restrict	
propagation	and	use	of	capabilities.	

• Seven	peer-reviewed	publications,	including	one	journal	article,	and	five	in
top	security	and	programming	language	conferences.	

1. Moore,	S.,	C.	Dimoulas,	M.	Flatt,	R.	B.	Findler,	and	S.	Chong	(2016,
October).	Extensible	access	control	with	authorization	contracts.	In	
Proceedings	of	the	29th	Annual	ACM	SIGPLAN	Conference	on	Object-

DISTRIBUTION A: Distribution approved for public release.

Oriented	Programming	Languages,	Systems,	Languages,	and	
Applications,	New	York,	NY,	USA.	ACM	Press.	To	appear.	

2. Amir-Mohammadian,	S.,	S.	Chong,	and	C.	Skalka	(2016,	April).	Correct	
audit	logging:	Theory	and	practice.	In	5th	International	Conference	on	
Principles	of	Security	and	Trust.	

3. Chong,	S.	and	R.	van	der	Meyden	(2015,	December).	Using	
architecture	to	reason	about	information	security.	ACM	Transactions	
on	Information	and	System	Security	18(2).	

4. Askarov,	A.,	S.	Moore,	C.	Dimoulas,	and	S.	Chong	(2015,	July).	
Cryptographic	enforcement	of	language-based	erasure.	In	Proceedings	
of	the	28th	IEEE	Computer	Security	Foundations	Symposium,	
Piscataway,	NJ,	USA.	IEEE	Press.	

5. Johnson,	A.,	L.	Waye,	S.	Moore,	and	S.	Chong	(2015,	June).	Exploring	
and	enforcing	security	guarantees	via	program	dependence	graphs.	In	
Proceedings	of	the	36th	ACM	SIGPLAN	Conference	on	Programming	
Language	Design	and	Implementation,	New	York,	NY,	USA,	pp.	291–
302.	ACM	Press.	

6. Moore,	S.,	C.	Dimoulas,	D.	King,	and	S.	Chong	(2014,	October).	Shill:	A	
secure	shell	scripting	language.	In	11th	USENIX	Symposium	on	
Operating	Systems	Design	and	Implementation.	USENIX.	

7. Dimoulas,	C.,	S.	Moore,	A.	Askarov,	and	S.	Chong	(2014,	June).	
Declarative	policies	for	capability	control.	In	Proceedings	of	the	27th	
IEEE	Computer	Security	Foundations	Symposium,	Piscataway,	NJ,	USA.	
IEEE	Press.	

• Support	of	two	graduate	students,	an	undergrad,	and	a	postdoctoral	fellow	
o Including	one	PhD	dissertation	(“Software	Contracts	for	Security”,	by	

Scott	Moore)	and	one	senior	thesis.	
• Outreach	

o Many	talks	(at	least	6	by	PI	Chong)	on	Shill	and	related	research,	
including	at	Cornell	University,	NII	Shonan	(Japan),	and	Brown	
University.	

o Postdoctoral	Fellow	Christos	Dimoulas	attended	a	2014	Dagstuhl	
Seminar	on	“Scripting	Languages	and	Frameworks:	Analysis	and	
Verification”,	and	presented	work	on	Shill.	

o Graduate	student	Scott	Moore	attended	the	2014	Vail	Computer	
Elements	Workshop	(VCEW)	and	presented	preliminary	work	on	
Shill.	

• Shill	publicly	released,	available	via	http://shill-lang.org/.		
• Provisional	patent	granted	on	core	technology	underlying	Shill.	
• Awarded	a	Physical	Sciences	and	Engineering	Accelerator	grant	by	Harvard	

University	to	help	develop	the	technology	underlying	Shill.	

Participants	
Stephen	Chong	(PI)	
Christos	Dimoulas	(Postdoctoral	research	fellow)	
Scott	Moore	(Graduate	student)	

DISTRIBUTION A: Distribution approved for public release.

Daniel	King	(Graduate	student)	
Daniel	Bradley	(Undergraduate)	
	

Collaborators	
Christian	Skalka	(Associate	Professor,	University	of	Vermont)	

Introduction	
The	objective	of	this	grant	is	to	improve	the	guarantees	offered	by	both	language-
based	information	security	mechanisms,	and	operating	system	information	security	
mechanisms.		It	seeks	to	do	so	by	investigating	interactions	between	language-based	
and	OS	mechanisms	for	information	security,	and	exploiting	these	interactions	both	
to	improve	the	precision	of	security	enforcement,	and	to	provide	greater	assurance	
of	information	security.	
	
Language-based	information	security	uses	programming	language	abstractions	and	
techniques	to	reason	about	and	enforce	information	security.	Language-level	
abstractions	and	mechanisms	can	provide	strong	fine-grained	application-specific	
information	security	guarantees.	By	contrast,	operating	system	(OS)	information	
security	mechanisms	use	OS-level	abstractions	to	provide	isolation	and	protection	
for	processes	executing	in	a	system;	recent	operating	system	mechanisms	can	
provide	fine-grained	isolation	and	protection.	
	
Synergies	between	programming	language	and	OS	mechanisms	provide	opportunity	
to	improve	information	security	guarantees	in	at	least	two	ways:	(1)	increasing	the	
precision	of	operating-system	mechanisms;	and	(2)	improving	the	assurance	of	
language-based	mechanisms.	
	
The	sponsored	work	has	focused	on	two	key	projects:	language-based	control	of	
authority,	and	reliable	auditing.	In	the	remainder	of	the	report,	we	describe	
progress	in	the	last	year	on	these	two	projects,	and	then	provide	a	summary	of	the	
research	performed	over	the	lifetime	of	this	grant.	

Language-based	control	of	authority	
The	Principle	of	Least	Privilege	suggests	that	software	should	be	executed	with	no	
more	authority	than	it	requires	to	accomplish	its	task.	Current	security	tools	make	it	
difficult	to	apply	this	principle:	they	either	require	significant	modifications	to	
applications	or	do	not	facilitate	reasoning	about	combining	untrustworthy	
components.	
	
We	have	explored	using	programming	language	techniques	to	specify	and	enforce	
restrictions	on	the	authority	of	components.	Previously	under	this	award,	we	
explored	declarative	policies	to	restrict	the	use	of	capabilities,	and	designed	Shill,	a	
secure	shell	scripting	language.	In	this	last	year	of	the	project,	we	focused	both	on	

DISTRIBUTION A: Distribution approved for public release.

extending	the	usability	of	Shill,	and	also	exploring	the	foundations	of	authority	
control.	For	the	usability	of	Shill,	we	have	started	a	port	of	Shill	to	the	Linux	
operating	system,	which	will	greatly	enhance	the	applicability	of	the	tool.	
	
In	addition,	we	have	received	a	provisional	patent	(“Method	For	End-To-End	
Enforcement	Of	Security	Policies	In	A	Scripting	Language”,	Application	number	
62243900)	for	some	of	the	key	concepts	embodied	in	Shill.	
	
Investigation	of	the	foundations	of	authority	control	lead	to	the	recognition	that	
existing	programming	language	access	control	frameworks	do	not	meet	the	needs	of	
all	software	components,	and	the	development	of	an	expressive	framework	to	
implement	access	control	monitors	for	components.	The	basis	of	the	framework	is	a	
novel	concept:	the	authority	environment.	An	authority	environment	associates	
rights	with	an	execution	context.	The	building	blocks	of	access	control	monitors	in	
our	framework	are	authorization	contracts:	software	contracts	that	manage	
authority	environments.	We	implemented	a	diverse	set	of	existing	access	control	
mechanisms	and	writing	custom	access	control	monitors	for	three	realistic	case	
studies,	demonstrating	the	expressiveness	and	applicability	of	the	framework.	This	
work	will	be	published	at	OOPSLA	2016,	a	top-tier	programming	language	
conference.	
	
In	addition,	this	award	has	supported	additional	relevant	research,	including	the	use	
of	application	architecture	to	enforce	high-level	application-specific	information	
security	guarantees	(Chong	and	van	der	Meyden,	2015),	the	use	of	cryptography	to	
enforce	expressive	information	security	policies	(Askarov	et	al.,	2015),	and	
sophisticated	program	analysis	techniques	to	discover	and	enforce	application-
specific	security	guarantees	(Johnson	et	al.,	2015).	

Summary	of	Shill	
Shill	scripts	enable	compositional	reasoning	about	security	through	contracts	that	
limit	the	effects	of	script	execution,	including	the	effects	of	programs	invoked	by	the	
script.	Shill	contracts	are	declarative	security	policies	that	act	as	documentation	for	
consumers	of	Shill	scripts,	and	are	enforced	through	a	combination	of	language	
design	and	sandboxing.	
	
In	work	under	this	grant	in	previous	years,	we	implemented	a	prototype	of	Shill	for	
FreeBSD.	We	have	been	developing	a	Linux	version	of	Shill.	
	
Shill	uses	declarative	security	policies	that	describe	and	limit	the	effects	of	script	
execution,	including	effects	of	arbitrary	programs	invoked	by	the	script.	
These	declarative	security	policies	can	be	used	by	producers	of	software	to	provide	
fine-grained	descriptions	of	the	authority	the	software	needs	to	execute.	This,	in	
turn,	allows	consumers	of	software	to	inspect	the	software’s	required	authority,	and	
make	an	informed	decision	to	execute	the	software,	reject	the	software,	or	apply	a	
more	restrictive	policy	on	the	software.	The	Shill	runtime	system	ensures	that	script	

DISTRIBUTION A: Distribution approved for public release.

execution	adheres	to	the	declared	security	policy,	providing	a	simple	mechanism	to	
restrict	the	authority	of	software.	
	
Two	key	features	enable	Shill	declarative	security	policies:	language-level	
capabilities	and	contracts.	Shill	scripts	access	system	resources	only	through	
capabilities:	unforgeable	tokens	that	confer	privileges	on	resources.	Shill	scripts	
receive	capabilities	only	from	the	script	invoker;	Shill	scripts	cannot	store	or	
arbitrarily	create	capabilities.	Moreover,	Shill	uses	capability-based	sandboxes	to	
control	the	execution	of	arbitrary	software.	Thus,	the	capabilities	that	a	user	passes	
to	a	Shill	script	limit	the	script’s	authority,	including	any	programs	it	invokes.	Shill’s	
contracts	specify	what	capabilities	a	script	requires	and	how	it	intends	to	use	them.	
Shill’s	runtime	and	sandboxes	enforce	these	contracts,	hence	they	serve	as	fine-
grained,	expressive,	declarative	security	policies	that	bound	the	effects	of	a	script.	

Personnel	
This	grant	has	supported	postdoctoral	research	fellow	Christos	Dimoulas	(who	
joined	the	project	in	January	2013)	and	graduate	student	Scott	Moore	(who	joined	
the	project	in	Fall	2013).	Both	Dimoulas	and	Moore	this	year	have	been	working	on	
the	design	and	implementation	of	Shill,	and	formal	foundations	for	the	control	of	
authority	in	computer	systems.	Moore	graduated	in	Summer	2016,	and	is	continuing	
to	develop	the	technology	underlying	Shill.	

Integration	of	language-level	and	OS	mechanisms	for	
provenance	
Provenance	is	the	history	of	computation.	Audit	logs	are	a	form	of	provenance,	as	
are	execution	traces,	and	meta-data	such	as	version	information	recorded	by	a	
version-control	system,	or	timestamp	and	ownership	information	recorded	by	a	file	
system.	Auditing	underlies	retroactive	security	frameworks,	and	has	become	
increasingly	important	to	the	theory	and	practice	of	cybersecurity.		
	
	In	systems	where	auditing	is	used,	programs	are	typically	instrumented	to	generate	
audit	logs,	based	on	some	formal	or	informal	auditing	policy.	However,	even	if	
auditing	policies	are	formal,	it	is	difficult	to	ensure	that	execution	of	manually	
instrumented	programs	will	generate	a	“correct”	audit	log	and	guarantee	expected	
accountability.		
	
In	this	project,	we	investigate	language-level	mechanisms	for	specifying	and	
enforcing	audit	policies,	i.e.,	specifying	what	information	should	be	recorded	in	an	
audit	log,	and	automatically	instrumenting	the	program	to	provably	capture	that	
information.		
	
In	collaboration	with	Christian	Skalka	(UVM),	we	have	developed	a	novel	semantics	
of	auditing	based	on	information	algebra,	along	with	proof	techniques	for	ensuring	
correctness	of	automated	program	instrumentation	strategies,	aka	retrofitting.	We	

DISTRIBUTION A: Distribution approved for public release.

have	defined	a	retrofitting	strategy	that	supports	a	general	class	of	auditing	policies,	
and	proved	that	this	retrofitting	strategy	is	guaranteed	to	correctly	enforce	a	
general	class	of	user-specified	auditing	policies.	Moreover,	we	have	implemented	
this	model	for	the	Java	programming	language,	and	applied	it	to	audit	an	open-
source	medical	records	application.	This	work	appeared	at	the	5th	International	
Conference	on	Principles	of	Security	and	Trust	(POST),	in	April	2016.	

Personnel	
We	are	collaborating	with	Christian	Skalka	(UVM)	on	this	work.		

DISTRIBUTION A: Distribution approved for public release.

AFOSR Deliverables Submission Survey

Response ID:6778 Data

1.

Report Type

Final Report

Primary Contact Email
Contact email if there is a problem with the report.

chong@seas.harvard.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

617 496-6382

Organization / Institution name

Harvard University

Grant/Contract Title
The full title of the funded effort.

Integrating Programming Language and Operating System Information Security Mechanisms

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-12-1-0262

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

Stephen Chong

Program Officer
The AFOSR Program Officer currently assigned to the award

Tristan Nguyen

Reporting Period Start Date

06/01/2013

Reporting Period End Date

05/31/2016

Abstract

This grant aims to improve the guarantees offered by both language-based information security
mechanisms, and operating system information security mechanisms. It seeks to do so by investigating
interactions between language-based and OS mechanisms for information security, and exploiting these
interactions both to improve the precision of security enforcement, and to provide greater assurance of
information security.

This grant focuses on two key projects: language-based control of authority; and formal guarantees for the
correctness of audit information.

Highlights of the reporting period:
* Design, implementation, and release of Shill, a secure shell scripting language. See http://shill-lang.org/.
* Design and implementation an extensible framework for authority control, capable of expressing and
composing many existing and novel access control mechanisms.
* Introduced formal definition for the correctness of audit logs, and designed and implemented an approach

DISTRIBUTION A: Distribution approved for public release.

to declare audit policies and automatically ensure that correct audit logs are generated during program
execution.
* Explored the use of declarative policies on capabilities to ensure correct usage, including access-control
and information-flow policies that restrict propagation and use of capabilities.
* Seven peer-reviewed publications, including one journal article, and five in top security and programming
language conferences.
* Support of two graduate students, an undergrad, and a postdoctoral fellow, including one PhD
dissertation ("Software Contracts for Security", by Scott Moore) and one senior thesis.
Outreach
- Many talks (at least 6 by PI Chong) on Shill and related research, including at Cornell University, NII
Shonan (Japan), and Brown University.
- Postdoctoral Fellow Christos Dimoulas attended a 2014 Dagstuhl Seminar on "Scripting Languages and
Frameworks: Analysis and Verification", and presented work on Shill.
- Graduate student Scott Moore attended the 2014 Vail Computer Elements Workshop (VCEW) and
presented preliminary work on Shill.
* Shill publicly released, available via http://shill-lang.org/.
* Provisional patent granted on core technology underlying Shill.
* Awarded a Physical Sciences and Engineering Accelerator grant by Harvard University to help develop
the technology underlying Shill.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF

The maximum file size for an SF298 is 50MB.

sf0298.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
maximum file size for the Report Document is 50MB.

Chong AFOSR YIP Final report.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

Moore, S., C. Dimoulas, M. Flatt, R. B. Findler, and S. Chong (2016, October). Extensible access control
with authorization contracts. In Proceedings of the 29th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Languages, Systems, Languages, and Applications, New York, NY, USA. ACM
Press. To appear.

Amir-Mohammadian, S., S. Chong, and C. Skalka (2016, April). Correct audit logging: Theory and practice.
In 5th International Conference on Principles of Security and Trust.

Chong, S. and R. van der Meyden (2015, December). Using architecture to reason about information
security. ACM Transactions on Information and System Security 18(2).

Askarov, A., S. Moore, C. Dimoulas, and S. Chong (2015, July). Cryptographic enforcement of language-
based erasure. In Proceedings of the 28th IEEE Computer Security Foundations Symposium, Piscataway,
NJ, USA. IEEE Press.

Johnson, A., L. Waye, S. Moore, and S. Chong (2015, June). Exploring and enforcing security guarantees
via program dependence graphs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

DISTRIBUTION A: Distribution approved for public release.

http://www.dtic.mil/whs/directives/forms/eforms/sf0298.pdf
http://www.dtic.mil/whs/directives/forms/eforms/sf0298.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/180-d0d30668b4878f4daa943d8815b87932_sf0298.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/180-940bf377b847721bd34404d0a9b4252b_Chong+AFOSR+YIP+Final+report.pdf

Language Design and Implementation, New York, NY, USA, pp. 291–302. ACM Press.

Moore, S., C. Dimoulas, D. King, and S. Chong (2014, October). Shill: A secure shell scripting language. In
11th USENIX Symposium on Operating Systems Design and Implementation. USENIX.

Dimoulas, C., S. Moore, A. Askarov, and S. Chong (2014, June). Declarative policies for capability control.
In Proceedings of the 27th IEEE Computer Security Foundations Symposium, Piscataway, NJ, USA. IEEE
Press.

New discoveries, inventions, or patent disclosures:
Do you have any discoveries, inventions, or patent disclosures to report for this period?

Yes

Please describe and include any notable dates

Received provisional patent "Method For End-To-End Enforcement Of Security Policies In A Scripting
Language", application number 62243900, received 20-OCT-2015.

Do you plan to pursue a claim for personal or organizational intellectual property?

Yes

Changes in research objectives (if any):

Change in AFOSR Program Officer, if any:

Initial program officer: Robert Herklotz
Current program officer: Tristan Nguyen

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary

Equipment/Facilities

Supplies

Total

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Aug 31, 2016 18:41:42 Success: Email Sent to: chong@seas.harvard.edu

DISTRIBUTION A: Distribution approved for public release.

	FA9550-12-1-0262 TITLE PAGE
	FA9550-12-1-0262 SF298
	FA9550-12-1-0262 FINAL REPORT
	amazonaws.com
	Chong AFOSR YIP Final report

	FA9550-12-1-0262 SURV

